10 research outputs found

    50 Years of quantum chromodynamics – Introduction and Review

    Get PDF

    J-PARC Hadron Physics and Future Possibilities on Color Transparency

    No full text
    The Japan Proton Accelerator Research Complex (J-PARC) is a hadron-accelerator facility that aims to provide secondary beams of kaons, pions, neutrinos, muons, and others together with the primary proton beam for investigating a wide range of science projects. High-energy hadron physics can be studied by using high-momentum beams of unseparated hadrons, which are essentially pions, and also primary protons. In this report, possible experiments are explained on color transparency and generalized parton distributions (GPDs). These projects are complementary to lepton-scattering experiments at Jefferson Laboratory (JLab), COMPASS/AMBER, and future electron-ion colliders. Thank to hadron-beam energies up to 30 GeV, J-PARC is a unique facility to investigate the transition region from the hadron degrees of freedom to the quark-gluon degrees of freedom. It is suitable for finding mechanisms of the olor transparency. Such color-transparency studies are also valuable for clarifying the factorization of hadron production processes in extracting the GPDs from actual measurements. These studies will lead to the understanding of basic high-energy hadron interactions in nuclear medium and to clarifications on the origins of hadron spins, masses, and internal pressure mechanisms

    50 Years of Quantum Chromodynamics

    No full text
    International audienceThis paper presents a comprehensive review of both the theory and experimental successes of Quantum Chromodynamics, starting with its emergence as a well defined theory in 1972-73 and following developments and results up to the present day. Topics include a review of the earliest theoretical and experimental foundations; the fundamental constants of QCD; an introductory discussion of lattice QCD, the only known method for obtaining exact predictions from QCD; methods for approximating QCD, with special focus on effective field theories; QCD under extreme conditions; measurements and predictions of meson and baryon states; a special discussion of the structure of the nucleon; techniques for study of QCD at high energy, including treatment of jets and showers; measurements at colliders; weak decays and quark mixing; and a section on the future, which discusses new experimental facilities or upgrades currently funded. The paper is intended to provide a broad background for Ph.D. students and postdocs starting their career. Some contributions include personal accounts of how the ideas or experiments were developed
    corecore